EECS 470 Final Project Report

Porvesh Balasubramanian, Coy Catrett, Lohit Kamatham,
Velu Manohar, Aidan Spizz, Nikhil Sridhar

Abstract

This project implements a MIPS R10K-style processor design based on the
RISC-V Instruction Set Architecture (ISA), emphasizing scalability, modularity,
and extensive, non-fragile unit tests. The processor is designed to achieve high
Instruction Level Parallelism (ILP) while maintaining a balance between cycles per
instruction (CPI) and synthesized clock period. Leveraging an N-way superscalar
pipeline, the design integrates advanced features such as instruction prefetching,
non-blocking data and instruction caches, and a victim cache to minimize cache
miss penalties. Additionally, a Store Queue and Load Buffer were implemented to
streamline memory access, reduce latency, and enhance throughput.

This report provides an in-depth overview of the architectural design, details
of the components implemented, and the features integrated into the processor. It
also includes a comprehensive analysis of the impact of these components on CPI
and clock cycle time, demonstrating the effectiveness of the design in achieving
both performance and architectural efficiency.

1 Introduction

In modern computing, the demand for high-performance processors capable of executing
multiple instructions simultaneously has driven innovations in processor design. Instruc-
tion Level Parallelism plays a pivotal role in meeting these demands by enabling the
concurrent execution of instructions within a single program.

This project focuses on the implementation of a MIPS R10K-style processor archi-
tecture based on the RISC-V Instruction Set Architecture. The processor incorporates
advanced features, including an N-way superscalar pipeline, memory optimization tech-
niques such as non-blocking caches, victim caches, and specialized memory structures like
Store Queues and Load Buffers. These components work together to minimize execution
stalls, optimize memory access patterns, and enhance overall performance.

The primary objective of this project is to design a processor that achieves high ILP
while maintaining a low cycles-per-instruction (CPI) and a short synthesized clock period.
This report outlines the architectural decisions made during the design process, detailing
the implementation of key components and their integration into the final R10K-style
processor. It also provides a comprehensive performance evaluation, highlighting the
trade-offs between throughput, latency, and clock cycle time.

1.1 Project Background

The primary goal of this project is to design and implement a processor using System Ver-
ilog, building on foundational and advanced concepts discussed in the course EECS 470.



The project integrates theoretical knowledge of microarchitectures, including instruction-
level parallelism (ILP), pipeline hazards, cache hierarchies into a practical design frame-
work. Teams are tasked with creating a correct, out-of-order processor that adheres to
the RISC-V ISA while meeting performance metrics, including low cycles per instruction
(CPI) and a minimal synthesized clock period.

As part of the MDE, students gain hands-on experience in implementing sophisti-
cated architectural features such as superscalar pipelines, branch prediction, memory
optimization. Additionally, the course emphasizes the importance of hardware verifica-
tion and testing, requiring students to develop comprehensive testbenches to ensure the
functionality and reliability of their designs.

The design process is iterative, involving multiple stages of planning, development,
and evaluation. Students must balance performance optimization with hardware com-
plexity, making critical trade-offs between throughput, latency, and clock cycle time.
The collaborative nature of the project simulates real-world engineering environments,
preparing students for future roles in hardware design and computer architecture.

1.2 Design Overview

Key
Felch
Dispatch

Execule
Complete
Relire
WMemory

Fetch
Inst: on
Pre:
b2

I Data Memozy
Menory N e
Arbiter }‘—,——b Victim Cache
- J Ds

I MS
L

Figure 1: Architecture Diagram

Our design incorporates several advanced components and features to optimize perfor-
mance, including structures for efficient memory handling, and speculative execution.
This section provides a detailed overview of the key components in the processor design.



1.2.1 RI10K Design Choice

The R10K algorithm is a widely regarded out-of-order execution model known for its
simplicity and efficiency, making it an excellent choice for our processor design. Unlike
the P6 algorithm, which requires the entire data value to be passed between various
components such as the architectural register file, reorder buffer, reservation station, and
functional units, the R10K algorithm only needs to propagate tags. This fundamental
difference reduces the complexity of data movement within the processor, leading to a
more streamlined and efficient design. The R10K’s tag-based communication minimizes
the need for large data buses and complex forwarding paths, thereby improving scalabil-
ity and reducing the overall hardware overhead. Ultimately, our decision to implement
the R10K algorithm stems from its balanced trade-off between performance and imple-
mentation complexity. The R10K’s ability to handle out-of-order execution with minimal
overhead, combined with its efficient tag-based communication, aligns with our goal of
designing a high-performance processor that is both scalable and resource efficient. For
these reasons, we believed that the R10K was ideal foundation for our architecture, en-
suring robust performance while maintaining manageable design complexity.

1.2.2 Reservation Station

Our reservation station has 24 entries and dynamically schedules instructions for execu-
tion into an Issue Register. If there are no functional unit hazards and if there are no
dependencies, then the reservation station will issue instructions into the issue register.
The selection of instructions is categorized by the functional unit which the instruction
uses (alu, mult, load, store, branch) and is arbitrated by a priority selector. In order to
simplify the management of load and store instructions, our reservation station issues at
most one load and it also issues at most one branch instructions.

1.2.3 Reorder Buffer

The Reorder Buffer is a circular queue used to maintain the program order of instructions.
It ensures correct commit order by tracking instructions from dispatch to retirement. The
ROB has a size of 32 entries, providing sufficient capacity to hold instructions in flight
while balancing hardware complexity. This structure is critical for handling branch mis-
direction, as it allows the processor to roll back changes in case of branch mispredictions
or exceptions, ensuring precise state recovery.

1.2.4 Store Queue

The Store Queue is a crucial component of the processor’s memory subsystem, designed
to handle store instructions efficiently while preserving memory consistency and correct
program behavior. The challenge of maintaining the correct order of memory writes,
particularly when store instructions are delayed or dependent on prior instructions, is
resolved in the store queue by maintaining the program order of each of the stores

The Store Queue operates as a circular buffer with a size of 4 entries, which is opti-
mized to balance hardware complexity and performance. Each entry in the Store Queue
contains metadata about the store instruction, including the target memory address, the
data to be stored, and any associated flags or status indicators. By keeping track of these
details, the Store Queue allows the processor to handle multiple in-flight store instruc-
tions simultaneously, thereby improving throughput and reducing pipeline stalls. We did



not decide to implement the forwarding of data to dependent loads due to the complexity
of the implementation. Even though this would have improved performance, our group
was unable to implement it due to communication issues and tight deadlines.

The Store Queue interfaces with other memory structures, such as the Data Cache
and Miss Status Holding Registers (MSHRs). Store instructions in the queue are typi-
cally committed to memory only after passing all dependency checks and once the corre-
sponding instruction has been retired by the Reorder Buffer (ROB). This synchronization
ensures that speculative stores are not prematurely written to memory, preserving the
integrity of program execution.

Despite its benefits, the Store Queue introduces some challenges, particularly in work-
loads with high memory traffic or frequent store instructions. The fixed size of the queue
may lead to contention or stalls when the queue becomes full, requiring careful manage-
ment of store instructions to prevent bottlenecks.

In summary, the Store Queue is an essential component for achieving high memory
throughput and maintaining correctness in a superscalar, out-of-order processor. By
buffering store instructions, handling memory dependencies dynamically, and integrating
with other memory subsystems, the Store Queue contributes significantly to the proces-
sor’s overall performance and efficiency.

1.2.5 Load Buffer

The Load Buffer complements the Store Queue by managing load instructions and en-
suring efficient access to memory. In a high-performance processor, load instructions are
among the most frequent and latency-sensitive operations. The Load Buffer is designed
to handle these instructions dynamically, reducing stalls and ensuring that the pipeline
can continue executing instructions even when memory access delays occur.

The Load Buffer tracks pending load instructions, including their target memory
addresses, the data to be fetched, and the status of the memory operation. Our pipeline
only allows one load to be issued per cycle, however, multiple load instructions can be
in-flight due to memory latencies and instruction dependencies. By maintaining this
information, the Load Buffer enables the processor to manage multiple in-flight load
instructions simultaneously, improving throughput and reducing idle time in the pipeline.
While other modules in our processor are parametrizable, the load buffer is not due to
our design decision to simplify stalling logic as much as possible. It must have 16 entries
at all times due to 100 ns latency to the cache. Since our clock period is above 6 ns, then
we will never have more than 15 in-flight load instructions. A size of 16 was decided upon
for a micro-optimization as we are taking the modulus of the load buffer size, which is
expensive in hardware if the modulus is not a power of 2.

In conclusion, the Load Buffer is a vital component of the processor’s memory sub-
system, enabling efficient handling of load instructions and ensuring data correctness
and coherence. Together with the Store Queue, it forms the backbone of the proces-
sor’'s dynamic memory handling capabilities, supporting high ILP and contributing to
the processor’s overall performance and efficiency.

1.2.6 Free List

The Free List is responsible for tracking available physical registers in the processor.
During instruction dispatch, it provides a pool of unused physical registers for allocation,
ensuring efficient utilization of register resources. The size of the free list is the size of

4



reorder buffer plus the architectural register file plus the superscalar width in order to
accommodate for all possible in-flight and incoming instructions and register renaming
of those incoming instructions. In our final configuration, our reorder buffer size is 32,
the number of architectural register files is 32, and the superscalar width is 2 resulting
in a size of 66.

1.2.7 Architectural Register File

The Architectural Register File maintains the committed state of the processor, mapping
architectural registers to the physical registers holding their most recent values. Unlike
the speculative mappings in the Map Table, the Architectural Register File provides a
stable reference for the processor’s architectural state, ensuring correctness during ex-
ceptions, interrupts, and resets. This table enables the processor to recover its precise
state efficiently, resuming execution seamlessly after disruptions. By serving as the defini-
tive source of committed state, the Architectural Register File ensures robustness and
reliability in the processor’s operation.

1.2.8 Map Table

The Map Table is a fundamental part of the processor’s register renaming process, dynam-
ically mapping architectural registers to physical registers during instruction dispatch. By
eliminating false dependencies such as Write-After-Write (WAW) and Write-After-Read
(WAR) hazards, the Map Table allows instructions to execute out of program order
while preserving correctness. In case of misprediction, the processor restores the map ta-
ble setting it equal to the Architectural Register File. The Map Table also helps recycle
physical registers by updating mappings upon instruction retirement, optimizing resource
utilization.

1.2.9 Functional Units

The processor is equipped with multiple functional units to enable concurrent execution
of instructions. It includes two Arithmetic Logic Units (ALUs) for general-purpose com-
putations, one Arithmetic Logic Unit for branches, two units dedicated to multiplication
operations, and one Load-Store Unit for memory access instructions. This configura-
tion ensures sufficient resources to handle the high throughput demands of superscalar
execution.

1.2.10 Physical Register File

The Physical Register File stores the values of physical registers, with a total size of
64 entries. This structure is designed to accommodate the high number of in-flight
instructions supported by the processor, ensuring that data dependencies can be resolved
efficiently without resource contention.

1.2.11 Instruction Cache (I Cache) and Prefetching

The processor features a single-ported, direct-mapped instruction cache designed to op-
timize instruction fetch bandwidth while maintaining simplicity in hardware implemen-
tation. A direct-mapped cache is chosen for its straightforward indexing mechanism,
which reduces access latency compared to more complex associative cache designs. The



single-port architecture ensures that the cache can be accessed by one instruction at a
time, striking a balance between hardware simplicity and performance. In the proposed
processor design, the Instruction cache has 32 lines, each 64 bits wide.

A key feature of the instruction cache is its constant prefetching mechanism. Prefetch-
ing anticipates future instruction fetch requests by loading instructions into the cache
ahead of time, based on the program’s expected execution path. This proactive ap-
proach reduces cache miss penalties by ensuring that required instructions are readily
available when needed. In addition, constant prefetching minimizes the latency incurred
by instruction fetch operations, which is critical for maintaining high throughput in su-
perscalar designs.

The benefits of this cache design extend beyond reduced miss rates. By decreasing the
number of cache misses, prefetching also reduces the frequency of pipeline stalls caused by
instruction fetch delays. This, in turn, enhances the efficiency of the instruction pipeline
and contributes to the overall reduction in cycles per instruction (CPI).

While constant prefetching is effective in most scenarios, it has limitations, particu-
larly in handling irregular instruction access patterns. For example, highly unpredictable
branches or frequent jumps in the instruction stream may cause prefetching to load in-
structions that are not immediately needed, leading to a waste of cache bandwidth.

Overall, the instruction cache’s design, augmented by constant prefetching, plays a
pivotal role in achieving the processor’s performance goals. It ensures efficient instruction
delivery to the pipeline while maintaining a balance between hardware complexity and
execution speed.

1.2.12 Data Cache (D Cache) and Miss Status Holding Registers (MSHRs)

The processor is equipped with a write-back, non-blocking Data Cache designed to effi-
ciently handle memory read and write operations. This cache design prioritizes through-
put by allowing multiple outstanding memory requests to be processed concurrently, a
feature made possible by the inclusion of Miss Status Holding Registers (MSHRs). In the
proposed processor design, the data cache has 32 lines, each 64 bits wide. The write-back
policy ensures that modified data is written back to main memory only when it is evicted
from the cache, reducing the frequency of costly memory write operations. This approach
not only saves bandwidth but also enhances the processor’s overall energy efficiency.

The non-blocking nature of the Data Cache allows it to service multiple memory re-
quests simultaneously, significantly reducing stalls caused by cache misses. MSHRs play
a critical role in this functionality by tracking pending memory accesses and coordinat-
ing their completion. Fach MSHR maintains information about a specific cache miss,
including the memory address, request type, and any dependent instructions or requests.
By organizing and resolving these outstanding requests in parallel, MSHRs prevent the
cache from becoming a bottleneck during memory-intensive workloads.

In summary, the Data Cache’s write-back, non-blocking design, coupled with its use
of MSHRs and optimization techniques, ensures that the processor can handle memory-
intensive operations with high efficiency. It minimizes memory latency, reduces pipeline
stalls, and supports the overall goal of achieving high Instruction Level Parallelism (ILP),
making it a cornerstone of the processor’s architecture.



1.2.13 Victim Cache

A Victim Cache is a small, fully associative cache placed between the primary data cache
and the memory. It is designed to hold cache lines that are evicted from the data cache
due to conflicts, thereby reducing the penalty associated with conflict misses. In the
proposed processor design, the victim cache has 4 lines, each 64 bits wide, allowing it to
store recently evicted data for potential reuse. This helps mitigate the impact of thrashing
in the primary cache by temporarily retaining data that might otherwise require costly
refetches, improving overall cache performance and reducing memory latency.

1.2.14 Branch Prediction: Gshare

Branch prediction is critical for maintaining high throughput in pipelined processors.
Our branch prediction mechanism integrates three main components: the Branch History
Register (BHR), the Pattern History Table (PHT), and the Branch Target Buffer (BTB).
Together, these components implement a 4-bit Gshare predictor with a direct-mapped
BTB, offering a balance of accuracy, speed, and efficiency.

Branch History Register (BHR) The BHR is a register that records the outcomes
of the most recent branches as a sequence of bits:

e Each bit represents whether a branch was taken (1) or not-taken (0).

e In our design, the BHR is 4 bits wide, enabling it to capture the outcomes of the
last four branches.

The BHR is critical for identifying global patterns in branch behavior. For instance,
certain programs exhibit correlated branching behavior where the outcome of one branch
depends on previous branches. By maintaining a history of outcomes, the BHR enables
the predictor to detect such correlations and make more accurate predictions.

Pattern History Table (PHT) The PHT is a table of 2-bit saturating counters used
to predict the likelihood of a branch being taken or not-taken. The PHT works as follows:

e The index into the PHT is derived by XORing the BHR with the lower bits of the
branch’s program counter (PC). This indexing strategy, unique to Gshare, helps
distribute branches across the table, reducing aliasing.

e Bach entry in the PHT is a 2-bit counter that adjusts based on the actual branch
outcomes:

— If the branch is taken, the counter increments (up to a maximum value of 3).

— If the branch is not-taken, the counter decrements (down to a minimum value

of 0).
e Predictions are made based on the most significant bit (MSB) of the counter:

— 1: Predict taken.
— 0: Predict not-taken.

The PHT complements the BHR by storing and refining the predictions based on
historical data.



Branch Target Buffer (BTB) The BTB is a cache-like structure that stores the
target addresses of branches predicted as taken. Its primary role is to ensure that when
a branch is predicted as taken, the processor can immediately fetch instructions from the
target address, reducing stalls caused by control hazards. Our BTB is direct-mapped,
meaning each branch maps to a single location in the table.

Why Gshare? We chose the Gshare predictor for its ability to balance accuracy, com-
plexity, and efficiency:

e Global History Utilization: By using the BHR, Gshare incorporates global branch-
ing patterns, making it particularly effective for workloads with correlated branches.

e Reduced Aliasing: The XOR operation between the BHR and the PC address helps
distribute branches more evenly across the PHT, mitigating aliasing compared to
simpler predictors like bimodal.

e Compact and Fast: Gshare achieves high accuracy without the complexity or re-
source requirements of more advanced predictors.

Performance Benefits

e Accurate Outcome Prediction: Gshare’s use of global history improves the predic-
tion of correlated branches.

e Quick Target Resolution: The BTB allows immediate fetching from the correct
target address, minimizing control hazards.

e Flexibility: The 4-bit BHR and associated PHT can be scaled as needed, making
this design versatile across different applications.

The combination of the 4-bit BHR, PHT, and direct-mapped BTB in a Gshare pre-
dictor provides a robust solution to the challenges posed by control hazards. Gshare’s
ability to leverage global history, coupled with the low-latency target resolution of the
BTB, enables high prediction accuracy. This design ensures our processor can sustain
high instruction throughput, even in branch-heavy workloads, while maintaining scala-
bility and efficiency.

2 Visual Debugger

The visual debugger was developed as a full-stack web application, combining a Python
and Flask backend with a TypeScript and React frontend. This design was chosen due
to the ease of working with Python libraries for parsing VCD files generated during
synthesis. The React frontend was selected for its precise control over frame rendering,
while TypeScript was used to enhance maintainability and ensure type safety.

The backend is highly modular, well-documented, and designed for easy modification.
It retains the hierarchy of the simulated program, enabling users to visualize waveforms
and obtain an automated, precise view of the simulation state and its corresponding
modules. This functionality provides an intuitive way to debug and understand the
processor’s behavior.



Several tools and approaches were identified for future enhancements. A notable op-
tion is a Node.js parser, which could enable packaging the web application in Electron
for improved portability. Additionally, advanced parsers and linters, such as Slang, could
provide deeper insights and richer information for the frontend. ANTLR4, a parser gen-
erator that processes language grammar, offers potential for creating customized parsers,
further expanding the debugger’s capabilities.

3 Advanced Features

Table 1: Advanced Features of the Processor Design

Feature

Description

Superscalar Execution

N-way superscalar execution to enable multiple instruc-
tions to be issued and executed simultaneously.

GUI Debugger

A functional graphical user interface (GUI) for stream-
lined debugging and analysis.

Unit Tests

Well-made unit tests with excellent coverage of individ-
ual modules, ensuring robust verification.

Instruction Prefetching

Proactive fetching of instructions to reduce fetch latency
and mitigate pipeline stalls.

Non-blocking L1 Data Cache

A write-back, non-blocking L1 data cache to handle mul-
tiple memory requests simultaneously.

Victim Cache

An additional cache layer to reduce penalties caused by
conflict misses in the primary cache.

Sophisticated Branch Predictors

A 4-bit Gshare predictor with a direct-mapped BTB and
PHT for efficient branch handling.




4 Analysis

Harmonic Mean CPI

1 2 3 4 8 16

Figure 2: Harmonic Mean CPI

2.5

I

1.

[&]

=

0.

[&1]

o

The graph illustrates the Harmonic Mean CPI (Cycles Per Instruction) for varying levels
of parallelism or configurations. As observed, the CPI consistently decreases as the
configuration progresses from 1 to higher levels such as 2, 3, 4, 8, and 16. This indicates
improved processor efficiency as parallelism increases, allowing instructions to be executed
in fewer cycles. However, the rate of improvement diminishes at higher configurations,
suggesting diminishing returns due to limitations such as instruction dependencies and
overhead.

While a lower CPI is desirable, it is important to consider the trade-off with the
clock period, as increasing parallelism often requires more complex hardware, which can
extend the clock period. Configurations such as N = 2 and N = 3 strike an optimal
balance between achieving a significant reduction in CPI and maintaining a manageable
clock period. These configurations are often preferred as they deliver better performance
without overly increasing design complexity or power consumption. Beyond N = 4, the
hardware overhead and increased clock period may outweigh the modest gains in CPI,
making these higher configurations less practical for many applications.

10



Comparison of Execution Time: With and Without Prefetching (Adjusted, Discrete Points)

101 *® Without Prefetching
% With Prefetching

Execution Time

X
=
X
X
X

at

pt
no_hazard

gl
gt =
mergesort

fc_forward |-
fib |

dft |
fib_lon

bfs

btestl |

copy

alexnet |
btest2 |-
copy_long |
evens
fib_rec |
graph
haha
halt |-

Is_de
parallel |
sampler |
saxpy |
sort_search

insertion |

backtrack |-
basic_malloc |
evens_lon
insertionsort |
mult_no_ls
omegalul |
outer_product -
priority_queue
quicksort

Benchmarks
Figure 3:

The graph above illustrates the comparison of execution times across various bench-
marks with and without prefetching. Prefetching consistently demonstrates comparable
or reduced execution times for most benchmarks, highlighting its effectiveness in improv-
ing performance by mitigating memory latency and reducing pipeline stalls. By proac-
tively fetching instructions before they are needed, prefetching minimizes the time the
processor spends waiting for memory accesses, which is critical for performance in modern
processors. The results reinforce that prefetching is particularly beneficial, as it reduces
the overall execution time significantly compared to scenarios without prefetching.

11



CPI for differnt Rob Sizes

Alexnet Copy long Fib Long Merge Sort Fib Rec Insertion Sort

3.5

2.5

M

1.

[

=

0.

o

o

ES Hlc m24 W32

Figure 4:

The graph illustrates the CPI (Cycles Per Instruction) across various benchmarks for
different Reservation Station (RS) sizes (8, 16, 24, and 32). The results show that chang-
ing the RS size has minimal impact on CPI for most benchmarks, with only negligible
differences as the RS size increases. Given this minimal effect, we chose the smallest
RS size of 8 to reduce the clock period and critical path, optimizing overall hardware
performance and efficiency without compromising execution speed

12



CPI| for different RS Sizes

Alexnet Copy long Fit Long Merge Sort Fib Rec Insertion Sort

3.5

2.5

]

1

tn

=

0.

tn

=

mE ml6 m24 m32

Figure 5:

The graph shows the CPI (Cycles Per Instruction) for various benchmarks across
different Reorder Buffer (ROB) sizes (8, 16, 24, and 32). It is evident that increasing
the ROB size to 32 significantly improves CPI for larger and more complex programs
like ”Insertion Sort,” "Fib Rec,” and ”"Copy Long.” These benchmarks benefit from the
larger ROB as it allows better handling of instruction dependencies and out-of-order
execution, reducing stalls and improving overall efficiency. Although smaller ROB sizes
suffice for simpler programs, the notable performance improvement for larger workloads
justifies choosing an ROB size of 32 to optimize CPI and ensure robust performance
across diverse applications.

13



Hitratein Caches

120.00%

100.00%

80.00%
60.00%
40.00%
20.00%
0.00% M — —

Alexnet Copy long Fib Long Merge Sort Fib Rec Insertion Sort
B Victim Cache MWD Cache B |Cache

Figure 6:

The graph shows the hit rates for the Victim Cache, D Cache, and I Cache across
various benchmarks. While the D Cache and I Cache achieve consistently high hit rates,
particularly for benchmarks like ”Merge Sort,” "Fib Rec,” and " Insertion Sort,” the Vic-
tim Cache has a notably lower hit rate. Despite this, the Victim Cache plays a critical role
in reducing conflict misses by capturing blocks evicted from the primary caches, ensuring
smoother performance and preventing costly memory accesses. We chose to implement
the Victim Cache to complement the D Cache as it enhances overall cache efficiency
and resilience, particularly for benchmarks with irregular memory access patterns. This
layered caching strategy strikes a balance between maximizing hit rates and minimizing
performance degradation in edge cases.

14



4.1 GShare Analysis

Unfortunately, we cannot include analysis from the branch predictor. We left the GShare
branch predictor in our final implementation of the project but commented out the line
where we were making the actual prediction and indexing into the BTB. This is because,
when making predictions, we encountered difficulties handling jalr instructions. After
thorough testing, we were unable to determine the root cause of the bug.

In our current pipeline, we squash the pipeline in the following cases:

e If the branch was taken and the calculated branch target does not equal NPC.
e If the branch was not taken and NPC does not equal PC + 4.

The issue appears to be related to the writeback to a register during the execution of
jalr. In certain files, such as fib_rec.out, when the prediction is made, the registers
following the jalr instruction—although the correct PC is produced—start to exhibit
incorrect writeback outputs. This behavior leads us to believe the problem lies in how
jalr and its writeback are handled, particularly in cases where the prediction correctly
determines the branch direction as taken.

5 Testing Methodology

Thorough testing is critical to ensure the correctness, reliability, and non-fragility of the
processor design. Our testing methodology followed a structured, multi-stage approach,
beginning with the individual testing of all modules before integrating them into the over-
all system. This modular testing strategy allowed us to isolate and address errors early in
the development process, minimizing debugging efforts during integration and ensuring
that the system was resilient to potential edge cases and unanticipated workloads.

5.1 Unit Testing

The first step in our testing methodology was rigorous unit testing for each individual
module. These tests ensured that every component behaved as expected in isolation
before moving on to system-level integration. For most modules, excluding memory, we
simulated their functionality in C4++ and compared the behavior of our SystemVerilog
implementation to the ground truth provided by these simulations. This approach en-
abled us to validate the correctness and robustness of critical components such as the
Instruction Buffer (Ibuff), Reservation Station (RS), Reorder Buffer (ROB), Store Queue,
and Load Buffer. By maintaining a reference implementation in C++, we systematically
tested the state transitions and outputs of each module against expected results, ensuring
alignment with the intended behavior and minimizing potential issues during integration.

Each unit test was designed to account for edge cases and stress conditions to verify
non-fragility. For example, the Reservation Station’s ability to dynamically schedule and
dispatch instructions was cross-verified with scheduling decisions in the C++ simulation
under high contention scenarios, ensuring that it handled dependencies and resource
conflicts accurately. Similarly, we verified the Reorder Buffer’s capacity to maintain
instruction order and enable precise state recovery by simulating mispredictions and
exception scenarios.

15



Figure 7: Above is the output for the load buffer unit test. On the left is the output of
the processor and on the right is the ground truth.

The memory subsystem, which involved more complex interactions and timing depen-
dencies, was subjected to targeted unit tests. We individually tested components such as
the Data Cache, Store Queue, Load Buffer, and Miss Status Holding Registers (MSHRs)
for various scenarios, including cache hits and misses, store-to-load forwarding, and de-
pendency resolution. These tests ensured that the memory components handled realistic
and edge-case workloads effectively while maintaining data consistency and throughput.

5.2 System Testing and Integration

Once individual modules were verified, we proceeded to system tests, progressively inte-
grating modules to validate their collective behavior. Our system testing approach was
incremental, allowing us to isolate issues at each stage of integration and address them
promptly.

The integration process began with the memory subsystem. We combined the Data
Cache, MSHR, and Victim Cache into a unified data memory module and tested their
interactions to ensure efficient handling of memory requests. This stage verified that the
memory components worked together seamlessly, resolving dependencies and minimizing
latency.

Next, we integrated pre-execution modules, including the Instruction Buffer and
Reservation Station, to simulate instruction dispatch and scheduling. These modules
were tested for their ability to handle dependency tracking and resource management
under varying workloads. Execution modules were then added to the pipeline, and we
verified whether the execution logic produced correct outputs. To simplify testing at this
stage, we used fake fetch data to provide input to the pipeline, enabling us to focus on

16



the core execution flow without introducing fetch-related dependencies.

Finally, we integrated the fetch stage and instruction cache into the pipeline, complet-
ing the end-to-end system. The fetch stage and instruction cache, which had already been
tested independently, were validated in the context of the full pipeline. By introducing
components incrementally, we ensured that issues were isolated and addressed at each
stage, reducing complexity during debugging. The branch prediction was also occurring
in the fetch stage. However, we had trouble testing the branch prediction and recovery
until the entire pipeline was finished. This was because we would have to make a predic-
tion and then stimulate receiving the outcome back and updating the states. Since our
pipeline came together closer to the deadline than anticipated, it was difficult to debug
the issue regarding jalrs that we were running into as mentioned in Section 3.1.

5.3 Full Pipeline Testing and Results

After the full pipeline was assembled, we conducted comprehensive tests to validate its
performance and correctness. These tests included a variety of workloads, from simple
instruction streams to complex, memory-intensive programs, ensuring that the pipeline
handled all scenarios effectively. Testing also included branch-heavy workloads to verify
the accuracy of the branch prediction logic and its interaction with the instruction fetch
stage.

Our iterative approach to testing and integration proved highly effective. By testing
each module individually and integrating them part by part, we built confidence in the
design’s reliability at every stage. This strategy paid off during our submission to the
autograder, where our design passed all tests successfully on the first attempt, demon-
strating the robustness and correctness of our implementation.

In summary, our testing methodology emphasized rigorous unit tests for individual
modules and systematic system tests for integrated components. By combining C++
simulations, incremental integration, and comprehensive pipeline validation, we ensured
the correctness, reliability, and non-fragility of the processor design, achieving a high-
performance implementation capable of meeting demanding workloads.

6 Project Management

Effective project management was a cornerstone of our success, ensuring that tasks were
distributed evenly among team members and that our goals were met within the desig-
nated timelines. At the outset of the project, we established clear objectives and created
a detailed work plan to assign roles and responsibilities to each team member. Weekly
milestones were set to track progress, identify potential bottlenecks, and ensure alignment
among all group members.

We divided the project into logical sub-tasks based on functionality, such as memory
subsystems, fetch and execute stages, branch prediction, and debugging. Each member
was assigned specific components to work on, as outlined in Table 2. This structured
division of labor allowed team members to specialize in their areas while contributing to
the broader project objectives. Regular check-ins were held to synchronize efforts across
sub-groups, providing an opportunity to share progress, discuss challenges, and adjust
plans as necessary.

Throughout the project, we adhered to a flexible yet disciplined project plan. For
example, when unexpected issues arose in integrating the store queue, we re-evaluated our

17



milestones and redistributed tasks to balance the workload effectively. This adaptability
ensured that we remained on track to meet our deadlines without sacrificing the quality
of our work.

Collaboration was a key strength of our team. We utilized version control systems such
as Git to manage our codebase, enabling smooth integration and consistent tracking of
changes. Communication tools and platforms were used extensively to coordinate efforts,
resolve conflicts, and provide feedback. By fostering an open and supportive environment,
we encouraged each team member to contribute their expertise while learning from others.

Overall, our project management strategy ensured a well-organized, collaborative, and
goal-driven workflow. The consistent setting and monitoring of milestones, along with a
strong emphasis on communication and flexibility, allowed us to deliver a fully functional
processor design within the required time frame.

Table 2: Work Division

Member Name | Component Worked Upon Percentage of Work
Porvesh Bala Data Memory, [Cache, Fetch, Pre Execute 16.6%
Lohit Kamatham | Data Memory, ROB, Execute 16.6%
Velu Manohar Data Memory, Execute, Fetch 16.6%
Nikhil Sridhar Git, Integration, Pre-Execute, Store Queue 16.6%
Aidan Spizz Branch Predictor, IBuff, Fetch 16.6%
Coy Catrett Debugger, Store Queue, Load Buffer 16.6%

18



